Writing a fast OpenRISC emulator in
JavaScript — fun and pain






=
S
(®]
s
c
S
o
(]

e




The website: jorlk.com

jorik: OpenRISC OR1K Javascript Emulator Running Linux With Network Support

B ee  COpeaOPEn the menu

B =tern

LA
Book Tools

KA
asm js Core « 10FPS @ [ JERTOO

nd run C code in your browser

et X-Window system

Project page at github
Bu r to report any issues or feature requests
containing more detailed descriptions

= Programming environment

Developer and contributors

Main developer - Sebastian Macke simulationcerner.net " Gratipey N etwo r k

Network support - Ben Burns benjamincburns.com = Gratipey

Gerard Braad gbraad.nl
Compilation Demo - Neelabh Gupta Way a n

Compilation Demo and UART suppert - Lawrence Angrave

Games
If you like the project, please support it

— = [O== =




JavaScript Modules

Master

Parameters from html file

Terminal screen
Keyboard events
Ethernet data transfer

Framebuffer screen
Touchscreen events

Messages

Worker

OpenRiC—CPU

Memory

= i

Terminal
Keyboard
Ethernet
ATA hard drive
Framebuffer
Touchscreen
Real time clock

\lgd[e
.

interrupts

9p ‘

" File upload and download

Filesystem




odules

Parameters from html file

interrupts

OpenRRC—CPU
emory
Terminal screen Terminal
Kevhnard avents Keyboard
Ethernet data transfer Ethernet
ATA hard drive
Framebuffer screen Framebuffer
Touchscreen events Touchscreen
Real time clock
Virtio ‘
9p a
“File upload and download Filesystem'




Why JavaScript?
It runs everywhere

Everything which takes more than one click to
show does not get much attention.

It is considered as a bad language, which is sadly
true.

- [1,2,3]1+[4,5, 0] 1,2,34,5,6

— 0 wr true

But the language is better than its reputation.

At least four companies are writing optimized
compilers to squeeze out the maximum
performance.



Javascript is not typed

There are no integers, only doubles, but the compilers try to optimize it
— vy = 9999999999999999 => y = 10000000000000000

(double) (double)
— vy = OXFFFFFFFF+1 => y = 0x100000000
(integer) (deoptimized into double)
— y = O0x7FFFFFFF+1 => y = 0x80000000
(Integer) (Int? double?)

But there are logical operations
— yv = OxXFFFFFFFF|0 => vy = -1
— yv = OxXFFFFFFFE>>> 0 => y = OxFFFFFFFF

But there are typed arrays
— x = new Uint32Array (length)

Ways to optimize:
— Write like it would be a typed language

— Take care, that deoptimizations to doubles never occur
« y = (0xFFFFFFFF+1) |0 => y= 0x0
(integer) (integer)



What is asm.js

 The mode “use strict” ; adds restrictions to

JavaScript like additional error messages for
accessing undefined variables.

e The mode “use asm” ; adds additional error

messages to give you a guarantee for typed
variables that must be compiled only once.

— Only a subset of Javascript is allowed
— Fully compatible

* Implemented in Firefox in 2013



What is asm.js

Why just error messages?

Firefox with asm: 75.5 MIPS
Firefox without asm: 58.1 MIPS
Chrome (no support for asm):60.7 MIPS
IE 11 (no support for asm): 68.3 MIPS
Safari on iPAD: 81.0 MIPS

* Implemented in Firefox in 2013




What is asm.js

But the syntax is nasty

— group0 [SPR IMMUCFGR] 0x18;
— h [groupOp (SPR IMMUCFEFGR<<2) 2]
0x1810;

h is the heap and groupOp is the pointer to the
table

In this case the “view” of the heap is 32 Bit.
Therefore the last operation for the index must
be ll>> 2”

Project Emscripten allows to translate C++ to
asm.js JavaScript

— Switch-case is used instead of goto



The CPU



seconds

400
350
300
250
200
150
100

o0

Benchmarks

jslinux ——
vEo I
jor1k

240

b4

F

88

dd

380
23 17
4.0 -
gzip bzip2




400
350
300

seconds

150
100
o0

Benchmarks

jslinux ——
vEo I
jor1k

380

Why is jorlk so fast?

dd

38
23 17
4.0 -
gzip bzip2




Architecture

* OpenRISC is easy
— No history
— Almost no side effects

switch ((ins 26) &0x3F) {
case 0x29: // 1.andi
r[(ins 21) Ox1F] r[(ins 16)

OxFFFF) ;
break;

}

=> The instruction set is more like bytecode.

Ox1F]

(ins



Instruction emulation for ARM

void
armv5_and() {
uint32 t icode = ICODE;
int rn,rd;
uint32 t cpsr=REG_CPSR;
uint32 t Rn,op2,result;
uint32 t S;
if (!check_condition (icode)) {
return;
}
rd=(icode>>12) &0xf;
rn=(icode>>16) &0xf;
Rn=ARM9 ReadReg(rn) ;
cpsr&= ~(FLAG N | FLAG Z | FLAG C);
cpsr |= get data processing operand(icode) ;
op2 = AM SCRATCHIL;
result=Rné&op2;
ARM9 WriteReg(result,zd) ;
S=testbit (20,icode) ;
if(s) {
if ('result) {
cpsr |=FLAG_Z;
}
if (ISNEG(result)) {
cpsr|= FLAG N;
}
if (rd==15) {
if (MODE_HAS SPSR) {
SET_REG_CPSR (REG_SPSR) ;
} else {
fprintf (stderr,"Mode has no spsr in line %d\n",__LINE__);
}
} else {
REG_CPSR=cpsr;
. }
. }
. dbgprintf ("AND result opl %08x,op2 %08x, result %08x\n",Rn,op2,result);



Neglecting unused features

 CPU flags are not used
* Unalighed memory accesses are not checked
* Snoop hit never happens

The reservation for a subsequent l.swa 1s cancelled if another store to the same
memory location occur, another master writes the same memory location (snoop hit),
another l.swa (to any memory location) 1s executed, another l.Iwa i1s executed or a context
switch (exception) occur.

This would add an additional check to the load and store instructions.




Are there any downsides of the
architecture to write a performant
emulator?



BIG endian on little endian machines

JavaScript allows different views of typed arrays:
JavaScript runs mainly on little endian machines.

0 1 2 3 4 5 6 7 8

8 Bit | 8 Bit 8 Bit | 8 Bit

OpenRISC 32 Bit big endian 32 Bit big endian

But all memory accesses in the emulator are aligned and 32 Bit. So flip every 32-Bit word.

0 1 2 3 4 5 6 / 8

8 Bit 8 Bit 8 Bit 8 Bit
x86 32 Bit little endian 32 Bit little endian

oeJy(-Ta[ R I-B0 Vlemory access bits m

For little endian
) 32 w[addr] w[]: 32-Bit view of RAM
machines

16 h[addr”2] h[]: 16-Bit view of RAM
8 b[addr~3] b[]: 8-Bit view of RAM




The MMU: Software TLB lockup

e Usually implemented in two stages

1. Full translation table in memory

2.  Small translation lookaside buffer (TLB) in the CPU
- Usually filled in software => But code part translated
to JavaScript

* Add third stage
3. TLB variables (tlb buffer with one entry)

Translation fastpath of virtual to physical addresses:
if ((tlb check © virtual addr) >> 13)
{

tlb check = ...
tlb trans = ...

J
physical addr = tlb trans © virtual addr;



Overhead of the delayed instruction

Usual instruction pointer increment command line: “pc += 4;”

With delayed instruction support this would turn into
— pcCc = nextpc;
nextpc += 4;

But currently the fastpath for one instruction looks like this:

— for(;;) {
if (ppc == fence) {

}
ins = int32ram[ppc >> 2];
ppc ppc + 4;

switch ((ins >> 26) &0x3F) {

}
}

— The idea here is that the virtual pc is computed only when needed by
translating ppc (physical pc) back to the virtual pc address. The variable
fence is used to break out of the fast path when ppc reaches a jump or the
end of the current page.

The delayed instruction gives not additional overhead



The Filesystem

How to implement an efficient filesystem with a
size of 200MB
and 5000 files
that runs over the internet?



The Filesystem

How long does a “du /" take over the
internet?

— NFS Grab
rab a cup
— Samba
>_
_ cohfe of coffee
— On demand block devi_ce/

Problem is mainly latency, not throughput

Advantages of our filesystem:
- Read only filesystem on server
- Only one user



The Filesystem

Implement filesystem outside of the emulator

— tmpfs like. Use virtio/9p to exchange commands with Linux
Load the filesystem layout and metadata during the Linux boot
process.

<Dir name="hp_wvndr' mode="'48755%">
<File name="us' mode="'100644"' size='3339"/>
</Dir>
<File name="ee' mode='100644"' size="A4167"'/>
<File name="ara' mode='100644"' size="13194" compressed="1"/>
<File name="ua' mode="100644"' size="14943"' compressed="1"/>

Load compressed files on demand.
— OpenRISC binaries compress really well
— .bz2 currently, in future .xz
— Ordinary web server needed

Future: dependencies between files, packages
— http 2.0 will help here



Booting process timeline

time

Kgrnel boot T Login screen

basefs.xml busybox.bz2 X

Jetc/* X

extendedfs.xml libc.so.bz2 X

libz.so.bz2 X
: X

licurses.so.bz2
Jusr/bin/gcc?

time

Load of filesystem from server

Parallel load of files from filesystem
Non-parallelized decompression of file




Additional features of the filesystem

* Upload files into home folder
 Download home folder (as .tar)

* Sync with server
— Unique user id (acep://s-macke.qithus. t0/50r1x/ ruser=cdqrrexita)
— Currently 1MB quota
— server only needs upload.php



Network

=1 Dillo: Google

A3

Google

115 &,

* Yo dawg, | heard you like browsing
the web, so | put a browser in your
browser so you can browse while you
browse! (Twitter user Scott Elcomb)




Network

 Serverin the USA
— connected via websockets

— Sending and receiving ethernet frames connected to a
Linux TAP device

* Full working intranet

— Start jorlk in two windows and open a ssh session
between them.

* Major network applications available
* wget, curl, nc, ping, traceroute, telnet, ssh, nmap
* Openssl with certificates
* Web browsers: lynx, links, dillo



Future
Sound (implemented but not activated)

SMP

Run Debian (just one bug left)

Run Firefox (70% compiles)

Status, statistics and debug screen
Download already booted Linux (state file)

More terminals, better user interface, direct access to
the filesystem tree.

Dynamic recompiler with the eval function?

Suggestions welcome



Thanks

Stefan Kristiansson for the toolchain and
infinite help in the chat.

Ben Burns for implementing the network and
providing the relay server

Lawrence Angrave and Neelabh Gupta for the
C-development website

Jonas Bonn for the Linux kernel support

Christian Svensson for the OpenRISC Debian
distribution



Play Monkey Island Develop inC

[t H

Hekoal:0.0 kmh Set:i0 kmh! HIEDm Relative to:Merlin
HE-00:03 1-Tan-3200 gy | Langed .

TR

T8 glxgears =)
to open the menu

stemgavailahle

Watch movies

l’, 3
Ay N D N A L O —
. 2 . |




