
Writing a fast OpenRISC emulator in
JavaScript – fun and pain

Sebastian Macke

Vancouver

University of British Columbia

Downtown

No bears

bears

Wreck beach
Very liberal

X-Window system
Programming environment
Network
Wayland
Games

The website: jor1k.com

JavaScript Modules
Master Worker

Memory

OpenRISC-CPU

Messages

Terminal

Keyboard
Ethernet

ATA hard drive

9p

Filesystem

Framebuffer screen

Terminal screen

Keyboard events

Ethernet data transfer

Touchscreen events

File upload and download

RAM

Parameters from html file

in
te

rr
u

p
ts

Framebuffer
Touchscreen

Real time clock

Virtio

JavaScript Modules
Master Worker

Memory

OpenRISC-CPU

Messages

Terminal

Keyboard
Ethernet

ATA hard drive

9p

Filesystem

Framebuffer screen

Terminal screen

Keyboard events

Ethernet data transfer

Touchscreen events

File upload and download

RAM

Parameters from html file

in
te

rr
u

p
ts

Framebuffer
Touchscreen

Real time clock

Virtio

Why JavaScript?
• It runs everywhere
• Everything which takes more than one click to

show does not get much attention.
• It is considered as a bad language, which is sadly

true.
– [1,2,3]+[4,5,6] => 1,2,34,5,6

– 0 == “” => true

• But the language is better than its reputation.
• At least four companies are writing optimized

compilers to squeeze out the maximum
performance.

Javascript is not typed
• There are no integers, only doubles, but the compilers try to optimize it

– y = 9999999999999999 => y = 10000000000000000

– y = 0xFFFFFFFF+1 => y = 0x100000000

– y = 0x7FFFFFFF+1 => y = 0x80000000

• But there are logical operations
– y = 0xFFFFFFFF|0 => y = -1

– y = 0xFFFFFFFF>>> 0 => y = 0xFFFFFFFF

• But there are typed arrays

– x = new Uint32Array(length)

• Ways to optimize:

– Write like it would be a typed language
– Take care, that deoptimizations to doubles never occur

• y = (0xFFFFFFFF+1)|0 => y= 0x0

(integer) (deoptimized into double)

(Integer) (Int? double?)

(integer) (integer)

(double) (double)

What is asm.js

• The mode “use strict”; adds restrictions to
JavaScript like additional error messages for
accessing undefined variables.

• The mode “use asm”; adds additional error
messages to give you a guarantee for typed
variables that must be compiled only once.

– Only a subset of Javascript is allowed

– Fully compatible

• Implemented in Firefox in 2013

What is asm.js

• The mode “use strict”; adds
restrictions to JavaScript like additional error
messages for accessing undefined variables.

• The mode “use asm”; adds additional
error messages to give you a guarantee for
typed variables that is compiled only once.
– Only a subset of Javascript is allowed

– Fully compatible

• Implemented in Firefox in 2013

 Why just error messages?

 Firefox with asm: 75.5 MIPS
 Firefox without asm: 58.1 MIPS
 Chrome (no support for asm):60.7 MIPS
 IE 11 (no support for asm): 68.3 MIPS
 Safari on iPAD: 81.0 MIPS

What is asm.js
• But the syntax is nasty

– group0[SPR_IMMUCFGR] = 0x18;

– h[group0p + (SPR_IMMUCFGR<<2) >> 2]
= 0x18|0;

• h is the heap and group0p is the pointer to the
table

• In this case the “view” of the heap is 32 Bit.
Therefore the last operation for the index must
be “>> 2”

• Project Emscripten allows to translate C++ to
asm.js JavaScript
– Switch-case is used instead of goto

The CPU

Why is jor1k so fast?

• OpenRISC is easy

– No history

– Almost no side effects

Architecture

switch ((ins >> 26)&0x3F) {

…

 case 0x29: // l.andi

 r[(ins >> 21) & 0x1F] = r[(ins >> 16) & 0x1F] & (ins &

0xFFFF);

 break;

…

}

=> The instruction set is more like bytecode.

Instruction emulation for ARM
void

armv5_and(){

 uint32_t icode = ICODE;

 int rn,rd;

 uint32_t cpsr=REG_CPSR;

 uint32_t Rn,op2,result;

 uint32_t S;

 if(!check_condition(icode)) {

 return;

 }

 rd=(icode>>12)&0xf;

 rn=(icode>>16)&0xf;

 Rn=ARM9_ReadReg(rn);

 cpsr&= ~(FLAG_N | FLAG_Z | FLAG_C);

 cpsr |= get_data_processing_operand(icode);

 op2 = AM_SCRATCH1;

 result=Rn&op2;

 ARM9_WriteReg(result,rd);

 S=testbit(20,icode);

 if(S) {

 if(!result) {

 cpsr|=FLAG_Z;

 }

 if(ISNEG(result)) {

 cpsr|= FLAG_N;

 }

 if(rd==15) {

 if(MODE_HAS_SPSR) {

 SET_REG_CPSR(REG_SPSR);

 } else {

 fprintf(stderr,"Mode has no spsr in line %d\n",__LINE__);

 }

 } else {

 REG_CPSR=cpsr;

• }

• }

• dbgprintf("AND result op1 %08x,op2 %08x, result %08x\n",Rn,op2,result);

• }

• CPU flags are not used

• Unaligned memory accesses are not checked

• Snoop hit never happens

This would add an additional check to the load and store instructions.

Neglecting unused features

Are there any downsides of the
architecture to write a performant

emulator?

BIG endian on little endian machines

32 Bit big endian 32 Bit big endian

JavaScript runs mainly on little endian machines.

32 Bit little endian 32 Bit little endian

JavaScript allows different views of typed arrays:

But all memory accesses in the emulator are aligned and 32 Bit. So flip every 32-Bit word.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit

8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit 8 Bit

OpenRISC

x86

Memory access bits Access

32 w[addr]

16 h[addr^2]

8 b[addr^3]

Correction table
For little endian
machines

w[]: 32-Bit view of RAM

h[]: 16-Bit view of RAM

b[]: 8-Bit view of RAM

The MMU: Software TLB lockup

• Usually implemented in two stages
1. Full translation table in memory
2. Small translation lookaside buffer (TLB) in the CPU

- Usually filled in software => But code part translated
 to JavaScript

• Add third stage
3. TLB variables (tlb buffer with one entry)

if ((tlb_check ^ virtual_addr) >> 13)

{

 ...

 tlb_check = ...

 tlb_trans = ...

}

physical_addr = tlb_trans ^ virtual_addr;

Translation fastpath of virtual to physical addresses:

Overhead of the delayed instruction
• Usual instruction pointer increment command line: “pc += 4;”
• With delayed instruction support this would turn into

– pc = nextpc;
nextpc += 4;

• But currently the fastpath for one instruction looks like this:

– for(;;) {

 if (ppc == fence) {

 }

 ins = int32ram[ppc >> 2];

 ppc = ppc + 4;

 switch ((ins >> 26)&0x3F) {

 }

 }

– The idea here is that the virtual pc is computed only when needed by
translating ppc (physical pc) back to the virtual pc address. The variable
fence is used to break out of the fast path when ppc reaches a jump or the
end of the current page.

– The delayed instruction gives not additional overhead

The Filesystem

How to implement an efficient filesystem with a
size of 200MB
and 5000 files

that runs over the internet?

The Filesystem

• How long does a “du /” take over the
internet?

– NFS

– Samba

– Sshfs

– On demand block device

Problem is mainly latency, not throughput

Grab a cup
of coffee

Advantages of our filesystem:
 - Read only filesystem on server
 - Only one user

The Filesystem

• Implement filesystem outside of the emulator
– tmpfs like. Use virtio/9p to exchange commands with Linux

• Load the filesystem layout and metadata during the Linux boot
process.

• Load compressed files on demand.
– OpenRISC binaries compress really well
– .bz2 currently, in future .xz
– Ordinary web server needed

• Future: dependencies between files, packages

– http 2.0 will help here

Booting process timeline

time

vmlinux.bz2

basefs.xml busybox.bz2

/etc/*

extendedfs.xml libc.so.bz2

libz.so.bz2

licurses.so.bz2

Login screen Kernel boot

time

/usr/bin/gcc?

X

Load of filesystem from server

Parallel load of files from filesystem

Non-parallelized decompression of file

X

X

X

X

X

run

Additional features of the filesystem

• Upload files into home folder

• Download home folder (as .tar)

• Sync with server

– Unique user id (http://s-macke.github.io/jor1k/?user=cdqKKPxjfa)

– Currently 1MB quota

– server only needs upload.php

Network

• Yo dawg, I heard you like browsing
the web, so I put a browser in your
browser so you can browse while you
browse! (Twitter user Scott Elcomb)

Network
• Server in the USA

– connected via websockets
– Sending and receiving ethernet frames connected to a

Linux TAP device

• Full working intranet

– Start jor1k in two windows and open a ssh session
between them.

• Major network applications available
• wget, curl, nc, ping, traceroute, telnet, ssh, nmap
• Openssl with certificates
• Web browsers: lynx, links, dillo

Future
• Sound (implemented but not activated)

• SMP

• Run Debian (just one bug left)

• Run Firefox (70% compiles)

• Status, statistics and debug screen

• Download already booted Linux (state file)

• More terminals, better user interface, direct access to
the filesystem tree.

• Dynamic recompiler with the eval function?

Suggestions welcome

Thanks
• Stefan Kristiansson for the toolchain and

infinite help in the chat.

• Ben Burns for implementing the network and
providing the relay server

• Lawrence Angrave and Neelabh Gupta for the
C-development website

• Jonas Bonn for the Linux kernel support

• Christian Svensson for the OpenRISC Debian
distribution

